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Random anisotropy nematic model: Nematic-non-nematic mixture
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The influence of a random-anisotropy- (RA-) type disorder on the phase separation of the nematogen—non-
nematogen mixture is studied. A combination of the phenomenological Landau—de Gennes and Flory-Huggins
theories is used. We assume that the non-nematogen component (i.e., impurity) enforces the RA disorder to the
enclosing thermotropic liquid-crystal (LC) phase. The Imry-Ma argument is used according to which the
lower-temperature phase exhibits a domain-type pattern. The disorder strength is measured in terms of the
dimensionless parameter A. We consider the case in which the LC molecules and impurities mix in the

isotropic phase for A=0. The impurities enforce a finite degree of orientational ordering even in the high-
temperature paranematic phase. In the low-temperature phase they give rise to a domain-type structure, result-
ing in the distorted nematic (speronematic) phase. We show that the onset of orientational ordering increases
the phase separation tendency. The RA field, however, opposes this tendency. With increasing value of A the
difference between the paranematic and speronematic ordering decreases. Consequently the structure of the

phase-separated pattern can be much more complex in comparison to the A=0 case.
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I. INTRODUCTION

For years there has been an intense interest in behavior of
disordered liquid-crystal (LC) phases [1,2]. These systems
play an important role in various electro-optic applications
and are also of interest for basic science. Namely, they ex-
hibit many universalities [3] that link them mathematically
with other (often completely different) physical systems.
These universalities can be experimentally relatively easily
studied [4] in LC’s mainly due to their fluidity, softness, and
optic transparency and anisotropy.

In perturbed LC’s, disorder is mostly introduced geo-
metrically via a spatially randomly varying liquid-crystal—
perturber interface [1]. For perturbers one commonly
chooses inert porous matrices hosting LC phases or networks
formed by aerosil particles in aerosil-liquid-crystal mixtures.
As matrices, aerogels [5,6], Russian glasses [7], Vycor
glasses [8], and controlled-pore glasses [9,10] are conven-
tionally used. Aerosil mixtures [11,12] are particularly ad-
equate because one can obtain qualitatively different
random-field-type regimes by changing the concentration of
aerosil particles.

In these systems the combined action of finite-size effects,
surface interactions, and randomness has to be taken into
account. The finite-size effects are strongly apparent in the
specific-heat scaling behavior at the second order N-SmA
phase transition [10,11]. The LC-perturber interfaces by
themselves (i.e., for small enough interface curvature with
respect to the relevant LC order-parameter correlation
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length) commonly tend to increase the local degree of LC
ordering. Consequently in such samples at interfaces the de-
gree of ordering could be increased [9,10] or even apparent
prewetting phenomena [10,13,14] can take place. On the
other hand, the randomness works against the interface or-
dering tendency. It also globally enforces the isotropic distri-
bution of the relevant LC (quasi-)long-range-ordering field.
In the case of nematic and smectic phases these (also called
hydrodynamic) fields correspond to the nematic director and
smectic layer phase fields, respectively. Several studies sug-
gest that the randomness gives rise to a domain-type ordering
[5,15-18], which is for a weak enough disorder characterized
by a single representative domain length ;. Such domain
patterns were first predicted by Imry and Ma [19] in mag-
netic systems. The so-called Imry-Ma argument [19] claims
that an arbitrary weak disorder breaks the system into a do-
mainlike pattern. The necessary conditions are that (i) the
system possess a Goldstone mode (i.e., the phase is reached
via a continuous symmetry breaking phase transition) and
(ii) the spatial dimension d be equal or less than 4. Conse-
quently the (quasi-)long-range ordering of the pure system is
replaced by a short-range ordering. The characteristic do-
main size &, is expected to scale as &;cw 2“9 where w
measures the disordering strength. Some authors predict in-
stead the onset of quasi-long-range order [20,21], character-
ized by algebraically decaying correlations. Note that also in
this case &, plays a significant role measuring the distance
above which the correlations decay rather weakly [22].

In some cases the perturbers are mobile and the phase
separation can take place. This phenomenon in combination
with randomness has not yet been studied systematically.
Note that high-precision calorimetric studies [11,23] of LC-
aerosil mixtures at the isotropic-nematic phase transition re-
port a bimodal behavior. A possible explanation of this ob-
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servation is the phase separation. In this respect we refer to
recent studies [24,25] in which nematogen—non-nematogen
mixtures were studied. For the isotropic interaction between
unlike molecular species either the Carnaham-Starling [26]
approach of a hard-sphere suspension [24] or the Flory-
Huggins approach [27] was used [25]. For both approaches it
has been shown that a biphasic region between the isotropic
and nematic phases appears below the nematic-isotropic
transition temperature of the pure thermotropic nematogen.

In this paper we extend our previous studies
[15-18,25,28] on randomly perturbed nematic phases, em-
phasizing the influence of disorder on phase separation of a
binary nematic—non-nematic mixture. We assume that the
impurities (i.e., the non-nematic component) via the
impurity-LC interface orientational anchoring interaction im-
part to the LC phase a kind of random anisotropy field
[15,29]. We use a combination of the random anisotropy
nematic (RAN) [15] and Flory-Huggins [27] models. We
study the phase stability of the mixture as a function of the
absolute temperature 7, impurity concentration ¢, and ran-
dom anisotropy field strength A. We show that the random
anisotropy field even qualitatively changes the topology of
the (¢, T) phase diagram. We emphasize the following main
differences with respect to the A=0 case: (i) the phase sepa-
ration in the suppressed, and (ii) the structure of bistable
region becomes more complex.

The paper is organized as follows. In the next section we
introduce the model we use. The results concerning the in-
fluence of disorder are presented in Sec. III. In the last sec-
tion we summarize and discuss our results.

II. MODEL

In our calculations we use the phenomenological random
anisotropy nematic model [15]. The introduction of this
model was inspired by the semimicroscopic random aniso-
tropy magnetic (RAM) [29] lattice model, used to study a
class of randomly perturbed magnetic systems. In the follow-
ing we first introduce the lattice RAM and RAN models.
Then we express the free energy of the binary nematic—non-
nematic mixture using the Landau-de Gennes [30] and
Flory-Huggins [27] approaches. We consider the uniaxial
nematic ordering and introduce the effective description of
the system. We assume that the impurities affect the orienta-
tional LC ordering via a random-anisotropy-type field,

whose strength is measured with the dimensionless constant
A.

A. Random anisotropy nematic lattice model

The RAM lattice Hamiltonian [29] is expressed as

1
H=_EEEJijSi‘Sj_EWi(Si’ei)2~ 1)
i

1

Here s; stands for an n-component spin at the ith site in
a d-dimensional lattice. The sums in Eq. (1) run over all
lattice sites. The quantity J;; describes the magnetic interac-
tion between the ith and jth spin. For the ferromagnetic
short-range interaction one sets J;;=J>0 for the first neigh-
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bors and J;;=0 elsewhere. A positive constant w; stands for
the local field strength at the ith site. It forces s; locally along
+e;, the orientation of which varies randomly from site to
site.

The analogous RAN lattice free energy can be expressed
as

1
F=- 52 2 Jijn; - m;)* — 2 wiln;-e). 2)
i

i

Here n; is the unit vector pointing along the average orien-
tation of a rodlike LC molecule at the ith site of a lattice. The
average orientation of n; over a few simulation cycles
roughly corresponds to the nematic director field n in the
continuum picture. Linear terms in the unit vector field n;
in Eq. (2) are not allowed because of the head-to-tail (i.e.,
n,— -n,;) invariance of LC molecules. The interaction J;; is
commonly taken to be short ranged. Therefore J;;=J>0
is different from zero only between the first neighbors. In the
second term in Eq. (2) the unit vector field e; randomly ori-
entationally varies from site to site. This orientation is locally
enforced to a LC molecule if w;>0. In typical simulations
[20,31] the random anisotropy field strength is set to a con-
stant positive value w;=w at a fraction p of all sites and
w;=0 elsewhere, as in the RAM analog.

The limit w=0 of the RAN model is referred to as the
Lebwohl-Lasher [32] model. It reasonably describes the
temperature-driven isotropic-nematic phase transition. In the
continuum limit it maps to the so-called Frank free-energy
expression in the approximation of equal Frank nematic elas-
tic constants [30,33]. Note that the case for a finite value of
w was treated by several authors, but different conclusions
were reached about the character of the resulting nematic
ordering [20,21,31].

B. Free energy

We analyze the influence of disorder on phase diagram of
the thermotropic nematic—non-nematic binary mixture at an
intermediate scale (mesoscopic scale). The mixture is char-
acterized by a conserved parameter and a nonconserved
parameter. The conserved parameter is the concentration
c¢=N,/N of the impurities (the non-nematic component),
where N; is the number of impurity molecules and N stands
for the total number of molecules. The nonconserved param-
eter is the orientational nematic order parameter Q,z, which
is a traceless symmetric second-rank tensor. In case of
uniaxial nematic states, the local orientational ordering can
be expressed as [30,33]

Qaﬁ=S(3nan3— 5&3)/2 (3)

The unit vector n, referred to as the nematic director field,
points along the average local uniaxial orientation of LC
molecules. Due to the head-to-tail invariance of LC mol-
ecules, the cases +n refer to the same state. The scalar S is
the orientational order parameter. The isotropic liquid is
characterized by S=0, and a rigidly oriented nematic phase
(i.e., no fluctuations about m) would be characterized by
S=1.
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We express the free energy F of the mixture as the sum of
volume f} and interface f; contributions:

F=ffffvdV+JJf,-dA, (4)

where V is the volume of the system and A stands for the
surface area of the LC-impurity interface.
We express the volume term as

fV:fm(c) + (1 - C)[fc(cs Qaﬁ’) +fe(QaB,y)]' (5)

The first term is the free-energy density of the isotropic mix-
ing for the two components [27]

Vv

fulc) = [(I-o)In(l-=c)+clnc+xe(l-c)]. (6)
Here kg is the Boltzmann constant and y=(U,/k,T) is the
Flory-Huggins interaction parameter related to isotropic in-
teraction between unlike molecular species [27].

The second term in Eq. (5) is the Landau—de Gennes free-
energy density condensation [30,33]

fuole.0up) = (1 =c)alT- (1 =N)T10,p0pa
- BQaﬁQ,B'yan + C(QaﬁQBa)z}' (7)

The coupling between ¢ and Q,g in Eq. (7) results from
microscopic considerations. According to Humphries-James-
Luckhurst theory on a binary mixture [34], the orientational
free energy per molecule in a mean-field approximation is
given by

(1-c)us?

JINkgT = - +(1-c¢) Jf(ﬂ)lnf(ﬁ)sin Bdp.

(8)

where the strength of the molecular field is determined by
the molecular anisotropy u, 3 is the angle between the sym-
metry axis of the (cylindrically symmetric) molecule and the
director, and f(B) is the singlet orientational distribution
function. The first term is the internal energy per molecule,
while the second one represents the decrease of entropy due
to the nematic ordering. The free energy given in Eq. (8) can
be compared with the Landau-de Gennes expansion [35].
The consequence is that only the 7" term in the Landau—de
Gennes free energy comes from the internal energy, while
the other terms result from the entropy expansion.

The elastic part f,(Q,ps,) of the free-energy density op-
poses spatial variations in Q and can be expressed in the
simplest form as [30,33]

fe(QaB,y) = LQaﬁ,yQaﬁ,y? (9)

where L is a representative bare nematic elastic constant. In
the Frank description of the nematic ordering only in terms
of n does this form of f, correspond to the approximation of
equal Frank elastic constants.

The most essential orientational anchoring ordering term
in the interface free-energy density in Eq. (4) can be ex-
pressed as [36]
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w
fi(Qa,B)=_§eaQaBeB’ (10)

where W is the positive anchoring strength constant tending
to align the LC molecules along the unit vector e, referred to
as the easy axis of the LC-impurity interface.

For a pure uniaxial nematogen the condensation free-
energy density has the form

£.(8) = %a(T— T8> - =BS* + %cs“. (11)

3
4
This term drives the first-order nematic-isotropic phase tran-
sition. In the case of spatially homogeneous LC ordering the
nematic [S,=S(T;y)=B/6C] and isotropic (S=0) phases
coexist in equilibrium at the phase transition temperature
T=T,y=T +B?/24aC. The undercooling limit temperature of
the isotropic phase is labeled with T".

The most essential elastic and interface free-energy den-
sity terms in the uniaxial description of a pure nematogen are
expressed as

% (12)

3L 9L
fo="—=]|VS]*+—5*Vn
2 2

fi=—%vs((n'e)2—§). (13)

C. Mesoscopic random anisotropy nematic approach

If a relatively weak disorder is enforced on a liquid-
crystal phase, according to the Imry-Ma theorem [19], the
competition between the elastic ordering and random field
disordering tendencies results in a domainlike pattern. This
pattern is characterized by a single length scale &;. We accept
this prediction and treat &; as the variational parameter. The
remaining two variational parameters in our approach are the
average nematic order parameter (S) and the average impu-
rity concentration ¢={c). Here (---) denotes the averaging
within the domain volume V,;~ 53.

In the following we explain how &, enters into the effec-
tive form of the free-energy density (f)=(F,/V, [15,18],
where (F,;) stands for the average free-energy density within
the average domain. The RAN-type disordering field enters
in F via the interface contribution given by Eq. (13). We
consider cases where e exhibits random variations. In real
samples this can be caused by a predominantly randomly
spatially varying LC-impurity interface orientation. The rea-
son behind this might also be randomly placed impurities,
which will be discussed in more details in the Conclusions.
We also assume that the surface-to-volume ratio of the
liquid-crystal phase is relatively high and nearly homoge-
neously distributed over the system volume.

In the spirit of the RAN approach we set that the easy axis
e randomly spatially varies within a typical domain. To esti-
mate the averaging rate within it we introduce the distance
& on which e significantly changes. Thus, on traversing
the domain volume, the liquid-crystal molecules experience
N,~ (&,/&,)? random changes. For an infinitely large cluster
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(i.e., N;—0) and for essentially homogeneously oriented n
along a symmetry breaking direction within the domain, the
term [(n-e)?>—1/3] averages to zero. For a finite value of N,
according to the central limit theorem, the averaging effec-
tiveness is proportional to 1/VN,. It follows that

. 2_1 ~L_~<é>3/2
<(n e) 3> W \e) (14)

Using this approximation we express the average interface
free-energy density (f;) as

| ~_w<§)3/2
Vi &l

2

where (S) stands for the average value of S within the do-
main. We also assume that the relative importance of the
interface free-energy density term in (f) is proportional to
¢(1—=c). The linear dependence on ¢ is due to the fact that the
impurities are the origin of the random-field-type distortions.
The (1-c) contribution arises because all the relative impor-
tance of the LC component in the system is proportional to
(1-c).

In general the scale &, on which the local anisotropy axis
changes depends on the impurity concentration. Due to sim-
plicity, we do not take this into account. This is justified for
cases where &,<<¢,. This is also the limit in which the central
limit approximation is sensible.

The interface term enforces &;— 0. The elastic term,
which roughly scales with &; as [15]

(15)

9 1
~ ZL(S)*, 16
(o~ S (16)

opposes this tendency, favoring &;— .

D. Dimensionless free-energy density

For convenience we introduce the following ratios and
nondimensional quantities. The orientational order parameter
is normalized with respect to its value at the pure bulk
phase transition—i.e., S=S/S,—7=(T-T)/(T)y~T") is
the reduced temperature, « and A are the dimensionless elas-
tic constant and dimensionless anchoring strength, and
f=(H! fo is the dimensionless free-energy density, where
fo=B*/24*C>. For numerical purposes we introduce instead
of &, the dimensionless length &= \J’éf,/ f%—l. Therefore the
case {=0 corresponds to &;=§,.

Omitting the tildes, the nondimensional free-energy den-
sity f becomes

f=l+ (=) (f+ 1) (17)

The dimensionless homogeneous (f}), elastic (f,), and inter-
face (f;) terms are expressed as

fr=T[(A=c)In(1=c)+clnc+ xc(l-c)]

+(1=0)[(7+Nc)S?-28% + 541, (18)
«S?
fe= e (19)
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cAS
(1 + §2)3/4 >

where I'=NkgT/Vf, and \=24aCT /B>. Now, for a pure
bulk nematogen the phase transition temperature is my=1,
S(7y)=1, and 7=0 corresponds to the undercooling limit
temperature of the isotropic phase.

Note that the local ordering tendency of impurities for
A >0 induces a finite value of S even at relatively high tem-
peratures (i.e., at 7> 1). One commonly refers to such a case
as paranematic ordering. The equilibrium condition at the
nematic-paranematic phase transition is given by the follow-
ing set of equations [37]:

fi= (20)

JA oA
Ag(e.)=0, =3(c.5)=0, =2(c,8)=0, (1)
dc a5

where

Ag(C7S) :f(C’S) _f(cp’Sp) - IU“(C - Cp) (22)

is the difference in grand potential density between the two
phases and

of
p="cpS,) (23)
is the chemical potential. The ordering in the nematic and
paranematic phases is determined by the pairs (c,S) and
(cy.S,), respectively.

Our purpose is to calculate the stability phase diagram in
the (c,T) plane as a function of A. We calculate the
paranematic-nematic coexistence curve (binodal) numeri-
cally by finding pairs of states with equal chemical potentials
and pressures. This is equivalent to the minimization of Ag
with respect to the nonconserved order parameter S, followed
by a common tangent to a pair of points on the curve f(c)

[37].

III. PHASE BEHAVIOR

Using the described model we calculate numerically the
phase behavior of the system as a function of the dimension-
less temperature 7, impurity concentration ¢, and random
field strength A.

A. Undistorted bulk sample

We first consider a bulk sample where the elastic and
interface terms are absent (i.e., f;=f,=0, which is equivalent
to setting f=f}). In this case the paranematic phase is re-
placed by the isotropic one and §,=S;=0, where §; stands
for the degree of ordering in the isotropic phase. Taking into
account Egs. (21) we calculate a representative phase dia-
gram of the nematic-impurity (i.e., nematic—non-nematic)
mixture, which is plotted in Fig. 1. The solid curve refers to
the binodal (which constitutes the actual phase boundary),
and the dotted lines show the hidden first-order nematic-
isotropic transition, where the isotropic and nematic
branches of the grand potential are equal. The dash-dotted
lines are the spinodals. For temperatures below Ty; (7y;=1),
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FIG. 1. Phase diagram for the nematic—non-nematic binary mix-
ture in the absence of disorder. The solid curve refers to the binodal,
the dotted line shows the hidden nematic-isotropic phase transition,
and the dashed-dotted line is the spinodal. I'=A=y=1. Below
7=7y=1, a region of two-phase (I+N) coexistence exists between
isotropic (I) and nematic (N) phases. The undercooling limit tem-
perature for the isotropic phase 7" in the pure nematogen corre-
sponds to 7 =0.

there exists a two-phase coexistence region (I+N) between
the isotropic (I) and nematic (N) phases. On decreasing the
temperature the biphasic region broadens. Within the bipha-
sic region there are two different metastable regions: an iso-
tropic metastable (Im) and a nematic metastable (Nm) re-
gion, as well as an unstable region of the nematic (Nu).

We further emphasize that the phase diagram in Fig. 1 is
plotted for the following values of the important parameters:
x=I"=1. For this choice the value of y is below the critical
value x.=2 [38]. For y> x, the phase separation takes place
even in the isotropic phase.

To show how the onset of nematic ordering triggers phase
separation in conventional LC’s, we rewrite f [see Eq. (18)]
in the following form:

f=TI0=c)n(l =c)+clnc+ x pc(l =c)]
+ (1= o) (7,57 =28 + 8%, (24)

where 7= and . stands for the effective Flory-Huggins
interaction parameter:

\S?

Xeff=X+ T (25)

We see that the nematic ordering effectively increases the
Flory-Huggins interaction parameter, which can potentially
lead to order-induced phase separation.

B. RAN phase behavior

To see the impact of RAN (A >0), we rewrite f in the
form given by Eq. (24). It follows that

1(, AS
Xm:X+th—a:?Wz, (26)
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K
Teff= T+ ng (27)

Therefore, the random field tends to suppress the phase sepa-
ration for a finite value of & In the A=0 case in the nematic
phase the onset of orientational ordering increases the differ-
ence between the nematic and non-nematic molecules. Con-
sequently the phase separation tendency is increased. The
presence of the RAN field via its averaging influence de-
creases this difference, reducing the phase separation ten-
dency. On the contrary the local ordering tendency of the
RAN field could also trigger phase separation in the parane-
matic phase (where §=S5,>0) if x,;,>2. We mention that
the phase separation in the presence of a random field takes
place between the paranematic and speronematic phases. The
paranematic phase closely resembles the isotropic phase but
exhibits a finite degree of nematic ordering and £=0. The
speronematic phase represents a distorted nematic phase that
is characterized by a finite value of ¢ (for an ordinary nem-
atic phase £— ).

To show further qualitative influences of A we study its
influence on phase behavior numerically. In order to simplify
the numerical procedure we discard the linear f;oc depen-
dence in Eq. (20). We set instead f;=—AS/(1+ &)=, There-
fore we assume that the strength of the RAN field is inde-
pendent of c. Our tests show that in the region of interest this
change does not induce qualitative changes in the studied
phase behavior.

Minimizing Eq. (17) with respect to £ leads to

0 when § < S,
_ g \4 12 28
¢ [(S_) —1} when § > S, (28)
where S,=3A/4k. The corresponding free-energy density is
given by
1,(c,8) = fi(c,S) = AS + kS?

B 4
fle.8)= fs(c,8) = fi(c.S) - 2_7(§) S2 when §S>S,.
256\ k

when § < §,,

(29)

The subscripts p and s stand for paranematic and sperone-
matic ordering, respectively.

To calculate the phase diagram we use the equilibrium
conditions given by Egs. (21). The solution of these equilib-
rium conditions is determined by four quantities: (i) the
paranematic phase is determined by ¢, and S, and (ii) the
speronematic phase by ¢, and S,.

The phase (7,A) phase diagram for k=1 is presented in
Fig. 2. There are two different solutions of equilibrium con-
ditions (21). For 0< A <A., the stable solution (which we
have labeled solution I) develops from the bulk solution (in
the absence of disorder). It predicts phase separation with
different values of concentrations and orientational order pa-
rameters in the paranematic and speronematic phases. It is
characterized by a relatively large difference in concentra-
tions between the two phases (close to the difference in con-
centrations predicted by the bulk solution). At A=A this
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Solution 1 AN
1.2 bi-phase region S
T T T 1
-1.0 0.5 0.0 0.5 1.0

T

FIG. 2. The influence of disorder on the phase separation for the
nematogen—non-nematogen binary mixture. The phase diagram
(7,A) contains three distinct regions. Region I: solution I which
predicts the phase separation is stable. Region II: solution II which
predicts a different phase separation becomes stable. Region III:
solution II is stable in which the speronematic and paranematic
orderings (i.e., S,=S,, c,=c,) are equal. Therefore in this region a
homogeneous mixture exists. Solid line: A«(7). Dashed line: A.(7).

solution becomes metastable and the other solution of equi-
librium conditions (21) becomes stable (which we have la-
beled solution IT). This second solution, which predicts the
cancellation of phase separation, is characterized by two dif-
ferent behaviors: (i) for A«<A<A,, it predicts a phase
separation but with a smaller difference in concentrations
between the two phases, comparatively with solution I, and
(ii) at even larger degree of disorder (A>A,), this second
solution is still stable but it does not predict anymore a phase
separation. To sum up, the two characteristic values of the
disorder, A«(7) and A (7), define two curves in (7,A) space.
At low values of disorder, a solution develops from the bulk
solution, which predicts a phase separation. At intermediate
values of disorder, the first solution becomes metastable and
another solution becomes stable, which predicts a phase
separation with a smaller difference in concentration. At
large degree of disorder, this second solution remains stable

0.6 - one phase
0.4 e
02 Su
® 00+
: A=1.56 !
| - Solution | H
02 1l - Solution Ii :
-0.4 1 :
T T T 1
0.0 0.2 0.4 0.6 038 1.0
C

FIG. 3. The phase diagram of the nematogen—non-nematogen
binary mixture for A=1.56. The paranematic and speronematic
phases are labeled with P and S, respectively. The solid curve refers
to the binodal, and the dashed-dotted line is the spinodal. Region I:
solution I is stable. Region II: solution II (with a smaller concen-
tration difference Ac=c,—c,) is stable. For 7>0.5 the two phases
have the same concentrations and order parameters. ['=A=y=«
=1.
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0.0

I I I ]
-1.0 -0.5 0.0 0.5 1.0
T

FIG. 4. The difference of concentrations, Ac=c,—c;, between
the two phases as a function of temperature. Solid line: A=0.

Dashed line A=1.56. '=A=y=«=1.

but now it does not predict a phase separation. The critical
value of disorder A., at which the phase separation is can-
celed, increases with decreasing temperature. This can be
explained by the fact that with decreasing temperature, the
difference in concentrations between the two phases in-
creases. Thus a larger degree of disorder is needed to cancel
1t.

A demonstrative phase diagram of the system for a fixed
degree of disorder (A=1.56) is shown in Fig. 3. In region I,
at low temperatures (7<<0.4), solution I is stable. At 7=0.4
the transition into region II takes place. Finally, for 7>0.5
region III is entered. In it solution II consists of only one
phase (i.e., the paranematic and speronematic phases are
identical).

The difference of concentration between the speronematic
and paranematic phases for two different values of A is plot-
ted as a function of temperature in Fig. 4. The disorder has
two main effects. (i) It induces smaller concentration differ-
ences between the paranematic and speronematic phases. (ii)
It gives rise to an additional solution. This is manifested by

the jump of Ac=c,~c, at 7=0.4, corresponding to the tran-

sition between solutions I and II.

The corresponding difference AS=S,-S, of the order pa-
rameters between the speronematic and paranematic phases
is plotted in Fig. 5. The disorder (dashed line) induces a
smaller jump of the order parameter at the transition. This
jump is nearly constant with reducing temperature in solu-
tion IIL.

FIG. 5. The difference of order parameters, AS=S,~S,, between
the two phases as a function of temperature. Solid line: A=0.
Dashed line A=1.56. '=A=y=«=1.
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IV. CONCLUSIONS

We study the influence of the RAN-field-type disorder on
the phase separation of the nematogen—non-nematogen mix-
ture. We focus on the paranematic-speronematic coexistence.
The speronematic ordering refers to the distorted nematic
phase, characterized by a finite value of & The non-
nematogen component is treated as an impurity that enforces
the RAN field to the enclosing LC molecules. In calculations
we use a combination of the Landau—de Gennes approach
[30,33] in terms of the uniaxial tensor order parameter and
the Flory-Huggins approach [25,27]. The latter is used to
study the phase separation of a mixture of unlike molecules
that interact via an isotropic interaction. The form of the
coupling between the nematic order parameter S and the con-
centration ¢ of impurities is suggested by microscopic con-
siderations [25,34].

Following the Imry-Ma prediction [19,15] we assume that
the system breaks into a domain-type pattern, which is char-
acterized by the average domain size length . A finite value
of & results from the interplay between the (i) elastic inter-
actions and (ii) RAN field, favoring (i) é— o and (ii) £—0,
respectively. We measure the relative strength of the RAN
field in terms of the dimensionless constant A. We construct
the effective free energy of the system, which depends on the
following set of variational fields: S, ¢, and &.

We first consider the case without the RAN field (i.e.,
A=0). We show that the onset of nematic ordering for con-
ventional LC material parameters strongly increases the ef-
fective Flory-Huggins parameter x, . Therefore in the nem-
atic phase the phase separation is expected even if in the
isotropic phase the value of x,/ is below the critical value
Xe:

We further show that the RAN field suppresses the phase
separation tendency. We demonstrate that the RAN field in-
creases the complexity of the LC-impurity configuration if
the phase separation nevertheless takes place. This is mainly
due to the decreased difference between the paranematic and
speronematic phases for A>0 in comparison to the differ-
ence between the nematic and isotropic phases for A=0.
To illustrate that we considered the case with y=1<y, for
A=0 and A>0. For A=0 the phase separation solution (to
which we refer as solution I) is determined by the coexist-
ence of the isotropic and nematic components, characterized
by the following sets of parameters: (S=S;=0,c=¢;) and
(8=S,,c=c,) where c,<c; and x,AS=S,)>x.. For A>0
the value of x, is affected by LC ordering also in the
paranematic phase. Therefore, phase separation could be
triggered in both speronematic and paranematic phases. Con-
sequently we obtain for the chosen set of parameters at the
speronematic and paranematic coexistence two different so-
lutions (solutions I and II). The relative stability of these
solutions for a given value of A depends on the temperature.

We emphasize that our approach is approximative, yield-
ing qualitative predictions on the influence of disorder on
phase separation. In the following we discuss some of the
limitations of our model, analogies, and the relation with
experimental systems.

Our approach assumes a domain-type orientational struc-
ture that is well characterized by a single characteristic
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length scale. Note that a single-length-scale domain pattern
temporally arises also in a fast enough isotropic quench [39].
In the scaling regime the characteristic domain size of the
resulting pattern grows exponentially with time. In an impure
sample this pattern could be pinned and stabilized by impu-
rities. If the disorder strength is not strong enough, the dis-
tribution of &, values is not substantially broadened. This
domain pattern resembles the one that we consider in our
model. Such a pattern does not exhibit relatively thin walls
as encountered in a typical ferromagnetic domain structure.
With respect to magnetic analogs it is closer to the correlated
spin-glass structure [40] in which the magnetization varies
more or less smoothly over the sample.

In our approach the impurities (the non-nematogen com-
ponent) enforce a static random-anisotropy-type disorder to
surrounding LC molecules. We assume that the system is
close to thermal equilibrium (i.e., locked in a relatively deep
metastable glassy state). In a real sample these impurities
could move, making a time-dependent disorder field, which
is not taken into account in our model. However, we believe
that the mobility of impurities does not cause apparent
changes on the macroscopic scale if the system is close to
equilibrium. The impurities in our model affect the LC ori-
entational ordering. The mediating nematic director field
gives rise to relatively long-range interactions among impu-
rities. Consequently a move of an impurity is in general not
a local event like in a conventional liquid. It is very unlikely
that the movement of an impurity would trigger a relatively
large rearrangement of the system from the orientational
point of view because this requires energy.

From the experimental point of view the system we study
well mimics the LC-aerosil mixtures [11]. The hydrophilic
spherular aerosil particles of diameter 7 nm enforce a ho-
meotropic (i.e., orientation along the particle surface normal)
anchoring to surrounding liquid-crystal molecules. These
mixtures are believed to be adequate model systems for
random-field-type disorder [2,11,12,41,42]. By varying the
concentration p, of aerosil particles different types of disor-
der regimes are realized. Particularly interesting is the so-
called soft regime [11] that roughly extends in the interval
0.01 g/cm*<p,<0.1 g/cm?. In this regime the aerosils
form a weakly connected network gel of thixotropic charac-
ter [11]. This adaptive network, which is well characterized
by a single length scale [, 1/p,, enforces on LC molecules
a kind of random field. Further the network can reshape in
order to relieve the large enough elastic strain imposed by a
surrounding LC phase. We emphasize that in aerosil-LC mix-
tures the random spatial variation of the random field orien-
tation arises due to the essentially random structure (i.e., the
positions of spherular aerosil particles) of the aerosil net-
work. Note that several observations [11,41,42] report a
double-peak specific-heat appearance at the isotropic— (i.e.,
paranematic-) nematic (i.e., speronematic) phase transition.
Mercuri ef al. [41] explain it by claiming that this reflects the
transition between so-called random dilution to the quenched
random field regime. By means of optic polarization spec-
troscopy they also show that the higher-temperature peak is
related to the nucleation of nematic domains. This gives rise
to a coarse-grained appearance of the sample. Surprisingly,
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the lower-temperature peak exhibits a finer-grain texture.
They claim that the finer texture arises due to the appearance
of new domains and that the existing domains become bro-
ken into smaller one. The observed feature can be also ex-
plained using our approach. Namely, we show that at the
phase transition region two different solutions exist, sepa-
rated by a first-order phase transition. The finer optical struc-
ture could be explained by the appearance of multidomain
structure, which arises due to the complex interaction be-
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tween the phase separation and random-type field disorder
within the system.
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